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Abstract  

The ongoing introduction of the Smart Grid is making huge promises in terms of energy efficiency and 

cost savings, but at the risk of consumer privacy. This risk has shown to have a significant impact, and 

in some countries, privacy concerns have already caused a pushback that has significantly delayed 

smart grid deployment as well as increased deployment costs. In this paper we describe how much of 

the privacy risk can be mitigated, without hampering the business case or causing significant extra 

costs. By using modern Privacy Enhancing Technologies, it is possible to create a win-win situation, 

where both the business use case and the privacy protection profit at the same time. 

 

1 Introduction 
 

By adding more intelligence and measurements to the electricity distribution network, the 

Smart Grid promises vast energy savings due to a better alignment of demand and supply. 

Furthermore, the increasing use of weather depended green energy sources such as photovol-

taic and wind energy, and the potential addition of electronic vehicles to the distribution net-

work, a more sophisticated system is unavoidable. One important component in the future 

Smart Grid will be measurements and control in the consumers homes due to Smart Meters. 

Those meters will continuously monitor and report energy consumption, and potentially takes 

some degree of control on the attached devices. To enable this technology, the European 

Commission wants 80% of all European households to be equipped with a Smart Meter by 

2020. Simultaneously, the continuous measurement is a substantial privacy risk, as it allows 

deriving a large amount of personal data of the consumer. Due to this risk, the Dutch govern-

ment in 2010 halted a law for compulsory smart meter installation on the ground of privacy 

issues, causing a huge delay in the installation and significant economical damage.  

In this report, we show that privacy protection does not need to contradict energy savings and 

business goals. Instead, we show that by using modern privacy enhancing technologies, pri-

vacy protection can turn from a zero-sum game to a positive sum game, leading to both better 

privacy and higher quality measurements and thus better energy efficiency. This is possible 

by performing all computations on privacy critical data under encryption, where the electricity 

provider only obtains the result of the computation, but does not learn anything about the in-
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put data. This way, it is possible to use much more fine-grained measurements, e.g., measure 

in smaller intervals or report the energy consumption of different device types independently.  

 

2 A short primer on the Smart Grid 
 

This has become especially important with the increasing switch to renewable energy sources. 

While classical energy generation is largely predictable and under tight control of the opera-

tors, renewable sources such as wind or solar power can be highly variable, and generate both 

a sudden surplus of energy and a sudden shortfall. The promise of the Smart Grid is to match 

the unpredictability in the supply by more control over the demand. This is done by more pre-

cise measurements of the demand to allow for a better forecast, but also by actively control-

ling the demand side. To this end, energy prices will be highly dynamic and flexible, and 

some energy intensive appliances – such as electric heaters and climate controls – may be di-

rectly controlled by the grid provider.  Especially important here is ‘peak shaving’, i.e., reduc-

ing the maximum spikes in power consumption. 

While the Smart Grid encompasses many components, the part that is most interesting from a 

privacy point of view s the smart metering architecture. To this end, electricity meters in con-

sumers’ homes will get some computation power, as well as the ability to communicate with 

the backend, with other meters in the same household (e.g., gas- and water meters), and po-

tentially with household appliances like the HVAC system. The goal is to provide the grid op-

erator with detailed information on the power consumption, control flexible appliances either 

directly or through dynamic pricing, and to help a consumer to optimize their consumption 

pattern.  

The projections on energy and cost savings of the smart grid are immense. In 2008 study, the 

Electric Power Research Institute estimated savings of up to 3.7 billion kWh due to peak de-

mand reduction alone, and a total of $35 billion in electricity costs for the United States 

[EPRI2008]. In addition to the economic value, the smart grid is also seen as an important 

contributor to CO2 savings, which has prompted major regulators to speed up its deployment. 

In the EU, the goal is to have 80% of all households equipped with smart meters by 2020, 

while the US is substantially subsidizing the deployment due to the Energy Independence and 

Security Act of 2007. 

 

3 Privacy Risks 
While the major part of the smart grid does not deal with consumer data at all, one important 

component – the smart meter – will be in the consumers home, and measure and report data 

that allows deep insights into the consumer behavior. This ranges from obvious ones such as 

vacation time and sleeping patterns to information about health (e.g., sleep disorders), social 

behavior, or even religion. Furthermore, there is no good way for a consumer to temporarily 

opt out – while a mobile phone can be left at home when a consumer does not want to be 

traced, the meter will always be active (there are some proposals to include batteries in con-

sumers’ homes to allow them to mask some sensitive data, though the practicality of this ap-

proach can be questioned). In theory, the measurement at the meter allows for even greater 

detail – prototypes have already shown that it is possible to determine relatively precisely 
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which appliances are turned on at any given time, and to some extend even the activity on 

those appliances. 

This privacy risk is not only a problem for end consumers, but has already proven to be a sub-

stantial business risk. In the Netherlands, the parliament has passed a law to speed up the 

smart meter rollout by making the deployment of a smart meter compulsory. While the grid 

operators where preparing for roll-out and making substantial investments, the Dutch Senate 

blocked the law on the ground that it violated the European Convention of Human Rights be-

cause of privacy reasons. This unforeseen issue stopped the roll-out completely, and cost the 

companies involved millions of Euros. Privacy is since playing an important role in regulatory 

guidelines, both in North America [NIST10] and Europe [EC11]. 

3.1 The Limits of Anonymisation  

As a reaction to the increased privacy worries, a number of proposals have been made on how 

to add better privacy to the Smart Grid. The traditional way towards more privacy is to sepa-

rate data that can directly identify users from the actual measurement data, and only associate 

the measurement with a pseudo-anonymous device identifier. However, with this approach, 

the data is still there, and the only protection is that the link between device identifier and the 

identifying data is not directly available; protecting this link is a tedious, expensive and risky 

task, as various data breaches in the past have show. An additional risk is that it is not entirely 

clear anymore what kind of data is actually personally identifiable, which has been identified 

as a generic limit to the anonymisazion approach [Ohm09].  As smart metering data may re-

veal a lot about the circumstances and the habits of a person, it cannot be excluded that a re-

identification is possible based purely on the measurement data, when  seemingly harmless 

data does contribute towards identifiable data once collected in sufficient amounts and cross 

linked to other, public data sources. That this kind of re-identification is possible has been 

shown in past studies, e.g., on Netflix move preference data [NaSh08]. In all those cases, data 

that was anonymised (such as movie preferences, or anonymised health data) could be de-

anonymised with a surprising efficiency. It is therefore no longer possible to cleanly separate 

between personal identifiable data and harmless data, as each additional data item makes 

identification a little bit easier. Due to the wealth of data that can be derived in smart grid 

readings, there is a clear indication that the approach of simply separating identifiable and 

anonymous data is a good start, but will quickly reach its limits. 

As a more concrete example, grid data may reveal that a person always stays up late when a 

particular TV show is on, which in return may give some demographic data. It also can be 

linked with some semi-public data (e.g., people who ‘like’ this show on social networks) to 

assist in the de-anonymisation. Additional data mining may give information about my occu-

pation, holiday schedule, religious preference, etc, which all narrow down the anonymity. 

In addition to the possibility of re-identification, another risk- and cost factor is the secure 

storage of critical data. As we have seen in numerous data leaks in the recent past, preventing 

data leakage is hard, even for well funded and reasonably competent organizations.  This 

shows that collecting data and then attempting to protect it from unauthorized access is risky, 

expensive, and in many cases inefficient. We therefore argue that the best protection from 

such events is if the data is not there in the first place. 

4 Privacy by Design 
The Privacy by Design principle has been developed the privacy commissioner of Ontario, 

and is rapidly becoming a standard in the deployment of privacy sensitive systems; for the 
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smartgrid, the concept has been adopted by the Ontario smart grid deployment, and is recom-

mended to be applied for European smart girds by the European Commission [EC11]. The 

basic concept builds on seven relatively abstract principles [Cavo11], namely, respect for us-

ers, lifecycle protection, proactive/preventive rather than reactive privacy, visibility and trans-

parency, embedded privacy in the system design, privacy by default, and positive sum priva-

cy.  A concrete analysis and guidance on the how these principles can be used in a practical 

setting can be found in [GuTD11].  

An important aspect to make privacy happen in real systems is the aim for ‘positive sum’ 

technologies. This means, that a privacy technology is designed with the business case in 

mind, and optimized to not inhibit the business case – rather, if done right, it can even be sup-

portive and allow for better quality data and cheaper deployment costs. This contradicts the 

common view on privacy as being opposed to business goals, and being in the way of allow-

ing companies to make money. 

The second of the principles we will focus on in the rest of this paper is the concept data min-

imization; once this is deployed properly, many of the others (e.g., embedded privacy) follow 

implicitly. The basic idea to this end is that data cannot only be minimized by not collecting 

it; it can also be minimized by making only processed data visible to the grid operator, while 

hiding the unprocessed data items.  

The concept of data minimization is a useful tool where the concept of removing personally 

identifiable information hits its natural limits. Rather than trying to separate personally identi-

fiable data from the rest, the idea here is to determine which data is really needed to perform 

the task given, and then deploy technologies that assure that only that data is used.  

Concretely, for the smart grid, the main use for smart grid related data is demand-control, i.e., 

getting a detailed overview on the nature of the current electricity command, and regulate it 

by means of price changes or direct communication with heavy electricity consumers, such as 

HVACs and electric vehicles.  

For this business-case, the grid operator does not need to know any individual consumption 

data – it is enough for them to have the aggregate of the consumption of all appliances in a 

particular area. The primary reason why individual information is collected is that grid opera-

tors do not know how to derive the aggregates directly, and thus they collect privacy critical 

data they actually do not need. 

 

More precisely, the grid operator only sees data that is aggregated over a sufficiently large set 

of customers, and never needs to see any of the individual data items. This aggregated data is 

enough for all use cases we found with the two exceptions. The first one is billing, which can 

be done in a much more coarse resolution, and the second one consumer awareness - for 

which the data can be directly transferred to the consumer or a third party acting on behalf of 

the consumer, without any need of the grid operator to ever see that data. There also are pri-

vacy preserving protocols that allow computations on masked data of an individual meter 

[RiDa10,JaJK11], which build on a similar principle as the aggregation protocols but are out 

of scope here.  

For the other published usecases [EPRI2008] especially for the most promising ones in terms 

of energy savings (performing demand/response and peak shaving functionality), aggregated 

data is fully sufficient. Thus, with a privacy preserving aggregation protocol, most of the en-

ergy- and cost saving benefits of the Smart Grid are preserved, while largely eliminating the 

privacy issues. 
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Once such protocols are deployed, they open additional opportunities for the grid operator. 

For example, it is of great interest to what extend the consumption would be reduced if the 

electricity price changes. This is difficult to see from the normal measurements, as the energy 

could be consumed by a device that can react quickly on price change (e.g., a fridge or an 

electric heater, which can easily be tuned down) or one that cannot (e.g., a computer).  As the 

privacy issue is critical enough on overall consumption data, there is not even a debate on 

making such more detailed data available to the grid operator.  By aggregating data over sev-

eral households without revealing the individual input data, this is suddenly no longer an issue 

– the grid operator can see what all fridges in a neighborhood consume together, but does not 

see the consumption of individual fridges. Similarly, it is no longer a problem to have a higher 

measurement frequency (e.g., one measurement per minute), as no privacy relevant data is 

transmitted anymore. 

This way, the grid operator gets more detailed data where it is relevant for them, because they 

do not see data where they do not need it. 

In the next section, we will describe how the aggregation is done concretely. Our approach 

does not need any additional trusted hardware; all necessary operations can be done on the 

meter and the backend, using existing hardware for computation and communication. 

4.1 Computing under Encryption 

It is known since quite some time that it is possible to allow certain computations to be per-

formed on encrypted data without the need of decryption – that is, an untrusted party can per-

form the computation on encrypted input, and return the encrypted output, while never learn-

ing the concrete values. A variant of such a scheme has for example been deployed to help 

with double auctions for Danish farming industry [BCDG+08].  So far, this technology has 

mostly been seen as too expensive to use in embedded systems, and thus few applications 

have been tested in the real world. An excellent demonstration is shown in, Balasch et al. , 

where the authors have build a prototype that can use this approach for privacy friendly road 

tolling [BRTG+10], and have implemented their protocol on a device of comparable compu-

tation resources as real on board units for road tolling. 

 

Thus, the data never needs to leave the meter in unprotected form – each individual data item 

is protected, while the grid operator can derive the results of some computations derived from 

the data. 

Due to the high costs already associated with a smart meter rollout, it is vital that the privacy 

technology does nod add a substantial new cost factor. The most critical factor in there are the 

meters  - given the large number of meters that will be deployed, every cent of extra costs will 

translate into millions of additional costs for the grid providers. Thus, it is vital to keep the ex-

tra code to be executed on the meter small enough to fit into existing memory, and fast 

enough to run on the current processors without causing a visible slowdown.  Furthermore, 

the communication bandwidth of the meters is quite restricted, as a large number of smart me-

ters may share a single, noisy powerline channel for communication with the backend. Final-

ly, communication standards have already been developed (e.g., the DLMS/COSEM), and 

additional protocols need to fit into the framework of those standards 

For our protocols, this means that meter functionality has to be absolute minimal in terms of 

computation (on the meter side), and the meters – once initialized -  should only need to send 

one single (short) message, without requiring any further interaction with the backend or with 
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other meters. The latter is a challenge few comparable systems need to meet, and where most 

protocols in the literature fall short [GaJa10]. 

.   

Furthermore, we have to consider that the bandwidth available to an individual meter may be 

very limited; there can be a large number of meters attached to a noisy powerline communica-

tion channel, which does exclude communication heavy protocols. In addition, in some legis-

lations it is not allowed that meters of different households communicate with each other, as 

that is seen as a potential vector for meter based malware. Ideally, after the system setup, me-

ters would only unicast messages to the backend, and not be involved in any further computa-

tion. 

4.2 The Data Aggregation protocols DiPA and LoPA  

In this section, we outline two concrete protocols for privacy protecting data aggregation.  For 

the scope of this work, we only give an intuition on the protocol mechanism and a basic out-

line; the more detailed protocols as well as the protocols for efficient key initialization can be 

found in [KDK11]. 

The first protocol, DiPA (Diffie-Hellman based Private Aggregation) is a simple cryptograph-

ic protocol based on the Diffie-Hellman public key scheme. The main mechanism here is a 

homomorphic commitment scheme, which can be implemented very efficiently using Diffie-

Hellman on elliptic curves. 

A commitment scheme is a simpler tool than an encryption scheme. It allows a user to fix 

some secret (commit to it), and to later reveal the secret and prove that this was the value she 

committed to. As opposed to an encryption, a commitment scheme is easier to implement, and 

it does not need a secret decryption key, which means that there is less key management re-

quired. 

As visualization, one can think of the original value as a Lego-car, the commitment scheme as 

a rubber hammer, and the commitment as a heap of Lego-bricks. Committing to a value (car) 

means to smash it with the hammer, and showing the heap of stones to the verifier. It is now 

computationally hard for the verifier to reconstruct the car from the heap, while it is easy to 

verify that a given car corresponds to the given heap. 

The special property of homomorphic commitments is that it is possible to perform computa-

tions on the commitments, which then correspond to computations on the original plaintext, 

i.e.,  

          Commit(A+B) = Commit(A) * Commit(B) 

In our visualization, this means that two Lego cars can be added up to a transformer (which is 

the addition on the original value side). Similarly, if one adds the heaps generated by the two 

individual cars, one gets the heap generated by the transformer, so the addition on the original 

values has an equivalent operation on the commitments. 

These commitments form is the basis of the aggregation protocol. Because of the homomor-

phism,   we can sum up commitments various parties to a commitment of the aggregate. 
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Figure 1:DiPA (Diffie Hellman Private Aggregation) Protocol 

 

While this protocol only allows us to compare values we already know, it is easy to transform 

into a protocol that computes actual aggregates. To this end, we simply perform the standard 

aggregation protocol on individual bytes, and then brute force those on the backend server 

(given the small domain of measurement values, this should not be more than a few hundred 

tests, which a modern PC can easily handle). 

A main advantage of this protocol is that it allows for different sets of meters to be aggregated 

on, without requiring any change to the meter configuration. Instead, the aggregator needs to 

know the sum of the corresponding masking values. This would allow, for example, to sepa-

rately aggregate over all meters in one particular district, as well as over all meters of con-

sumers that also generate energy. 

 

The LoPA (Low overhead Private Aggregation protocol) is even simpler, but does sacrifice 

some flexibility for this simplicity. In this protocol, the group of meters whose measurements 

are aggregated is fixed, and all meters in one group know of each other. Each two meters in 

one aggregation group share a common secret x (i.e., in a group of ten meters, each meter 

needs to keep nine such secrets). When a measurement is to be protected, one meter adds its 

corresponding x for all its peers to its output value, while the other one subtracts it. Thus, the 

overall effect of the secrets cancels out completely, and an aggregator summing up all values 

gets the exact sum of all measurements. However, if only one measurement is missing, not all 

the secrets cancel out, and the reading is unreadable. To protect privacy over several readings, 

the secrets need to be changed after each reading; this can easily be done without any interac-

tion and little computational overhead by applying a hash function such as SHA-256. 
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Figure 2: LoPA (Low overhead Private Aggregation) protocol 

One major advantage of this approach is that there is no public key cryptography involved 

once the system is initialized, and all operations are simple additions as well as a hash func-

tion. This not only reduces the computation overhead to the absolute minimum, but also al-

lows the message size to stay exactly the same – a masked 32-bit value still is a 32-bit value, 

as opposed to the homomorphic commitment based protocol, where it needs to be long 

enough to be cryptographically secure. Thus, this protocol integrates very neatly into the ex-

isting DLMS/COSEM standard, and no changes have to be made to the message format. 

The price is a somewhat a smaller flexibility – in this protocol the aggregation group is fixed 

by the keys the meters have, and it is not possible to aggregate over different sets of meters 

simultaneously. Also, a meter does need enough memory to store all the shared keys with its 

peers. This does not have a large impact in practice, however, as the sets of meters should be 

kept small anyhow for stability reasons. 

5 Implementation & Practical Issues 

To validate the concept, both protocols presented above have been prototyped by Elster SG on 

their production meters, together with the billing protocol presented in [RiDa10], and the ap-

plication scenarios have been discussed intensively with a Dutch grid operator. The low over-

head protocol has been fully integrated into the existing protocol stack. In the end, the meters 

could successfully report masked measurements to a fourth meter, which was used to compute 

the aggregate. The cryptographic protocol has been implemented to verify the performance 

impact, but not yet integrated into the communication stack due to the change in the message 

formats this would have required. For both protocols, the computation overhead for the mask-

ing was essentially instant (i.e., far below one second), and thus easily within the scope of 15 

minute measurement intervals. 

One additional issue that comes in the nature of the aggregation protocols is that it is impossi-

ble to compute a sensible aggregate if a single measurement is missing.  This is unavoidable – 

if it were possible to compute such an aggregate, the aggregator could easily compute the dif-

ference of an aggregate with all meters and with all meters bar one, and then derive the meas-

urement of that meter by comparing the aggregates. In practice, however, that means that a 

single failed meter brings down its entire aggregation group. 
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For some use cases, this is entirely tolerable. For example, if the protocols are used for fraud 

detection, the failure of a meter is exactly the event we want to detect, and the protocols will 

detect it. For load balancing and demand response, however, this is a different issue. 

The most practical solution for this problem is to group meters in small groups of ca 20 me-

ters, and then computes the larger aggregate by summing up the aggregates of those groups. A 

single failed meter will still bring down 19 of its peers – however, on the larger scale of a de-

mand response system, the loss of 20 meters is still tolerable (one should also note that meters 

are not overly likely to fail) as long as it is detected and the output is not used in further com-

putations. This approach also makes it easier to accommodate the more efficient low overhead 

protocol – once there are only small groups of meters, the limited scalability of this protocol 

is no longer an issue. 

 

6 Conclusions 
In this paper, we have shown a privacy technology for data aggregation in a smart metering 

setting, which allows a grid provider (or any other authorized party) to compute aggregates of 

measurement data without needing access to the individual – privacy critical - measurements 

themselves. 

The main message is twofold. Firstly, modern privacy enhancing technologies have reached a 

level of practicability that does allow them to work in a real system – and while larger scale 

tests still have to be done before a real deployment is possible, the implementation already 

demonstrates that an integration into existing architectures and hardware is feasible. Secondly, 

we show a practical example of ‘positive-sum’ privacy, i.e., a privacy technology that has 

been developed together with the businesses, and that does fit into the overall business model 

and its requirements. In doing so, the technology even can generate positive value for the 

business – not only by helping to comply to regulation and saving costs on otherwise needed 

technology, but by allowing to have more privacy and actually use more data. 
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